DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER

Vijayalakshmi.P¹ and Kirthika.N²

¹PG Scholar & ²Assistant Professor,
Deptt. of VLSI Design, Sri Ramakrishna Engg. College, Coimbatore, Tamilnadu, India.

ABSTRACT

The saying goes that if you can count, you can control. Addition is a fundamental operation for any digital system or a control system. A fast and accurate operation of a digital system is greatly influenced by the performance of resident adders. In this regard, an efficient hybrid adder that combines which consists of Carry Look-ahead Adder, Carry Select Adder and Ripple Carry Adder using QCA technology is designed to meet all the needs that is indispensable for a digital circuitry. QCA is an emerging nanotechnology, which has the potential for higher speed, smaller size, and lower power consumption than transistor-based technology. Recent development in nano electronics provides a good introduction to the quantum mechanics of electrons, notions of free and confined electrons. Hence, with the help of QCA technology, the proposed hybrid adder produces a lesser area and delay when compared to the previous adders and this proposed adder is also applied to a Wallace tree multiplier, here the area and delay is reduced and speed of the multiplier is augmented.

KEYWORDS: Hybrid adder, QCA-Quantum-dot Cellular Automata, nano electronics, Wallace tree multiplier.

I. INTRODUCTION

Various nanoelectronic devices have been of interest to the research community during the last decade [9]. These include carbon nanotubes, silicon nanowires, resonant tunneling diodes, and others. These devices have emerged as alternatives to the traditional VLSI technology based on CMOS [12]. Conventional device physics is based on a free electron model and as device dimensions shrink, this model is not appropriate since the energies an electron is allowed to have become discrete. Recent book on nanoelectronics provides a good introduction to the quantum mechanics of electrons, notions of free and confined electrons as well as single electron and many electron devices. One of the devices suggested in the literature as an alternative to the traditional CMOS-based technology is the Quantum-dot Cellular Automata (QCA) [16]. In QCA, the device used for logic is also used for interconnect. The basic logic gates in the QCA architecture are the majority gate (also referred to as the majority voter) and the inverter. The focus of the proposed work is on design of arithmetic circuits in QCA. One possible approach is based on examination of the best adders (meeting some criteria) developed for existing technologies such as CMOS for adaptation to new ones such as QCA. The following two directions are considered in this proposed work i.e. area occupied by logic elements in a QCA design and examining optimization of logic. The “quantity” of logic also indirectly determines the “amount” of QCA wires in a design. Addition is one of the fundamental arithmetic operations. A number of fast adder architectures have been proposed in the long history of computer arithmetic in pursuit of three basic characteristics: a regular structure, a fast logic evaluation and a compact circuit layout. Hybrid adders combine elements of different approaches to obtain adders with a higher performance, reduced area and low power consumption. Thus, with the help of QCA technology hybrid adders are designed which reduces the delay and area.
The organization of the paper is as follows. Section II provides the previous related works of the paper. Section II provides basic notations pertaining to QCA. Section IV presents QCA design of the hybrid combination of Carry Select Adder, Carry Look ahead Adder and Ripple Carry Adder. Section V presents the simulation results and analysis of the proposed hybrid adder. Section VI deals with the application of hybrid adder in the design of Wallace tree multiplier.

II. RELATED WORKS

Prior work on adder designs has examined a few directions. Probabilistic modeling of QCA circuits is studied in [1]. Regular layout for parallel adders [2]. Cho and Swartzlander [3] present adders and multiplier designs using QCA. Adder designs and analyzes for QCA is studied in [4]. Modular design of conditional sum adders is studied in [5]. Analyzing the inherent reliability of moderately sized magnetic and electrostatic QCA circuits are studied in [6]. Probabilistic analysis of molecular quantum-dot cellular adders is presented in [7]. Design of hybrid LFA and RCA using QCA model is presented in [11]. Various concepts such as Robust adders based on QCA, model of QCA circuits using Bayesian networks, Hierarchical probabilistic macro modeling for QCA circuits, Energy dissipation per clock cycle in QCA adder circuits, Cho and Swartz Lander have presented design of a carry flow adder and a multiplier in QCA have been described in previous works. The proposed work begins by developing a QCA-based solution for an adder that is hybrid of ripple carry adder and carry select adder. This hybrid adder is shown to be well-suited to the QCA model. Further, the hybrid adder compares well with existing adders in terms of area of the QCA design (since it incorporates best features of ripple carry adders). It is also shown that the hybrid adder has a smaller area-delay product than existing adder designs in QCA.

III. BASICS OF QCA

3.1 QCA CELL

QCA and the QCA cell were first introduced by Prof. C. S. Lent at the University of Notre Dame. QCA information processing is based on the columbic interactions between many identical QCA cells; each constructed using four to six electronic sites coupled through quantum mechanical tunneling barriers [11]. A quantum-dot cellular automaton (QCA) is a square nanostructure of electron wells containing free electrons as shown in Figure 1. Each QCA cell is a set of four dots positioned at the four corners of a square. Each QCA cell is occupied by two electrons. The electronic sites represent locations that an electron can occupy. In semiconductor implementations, these sites are realized using coupled quantum dots. The cells are designed to contain two mobile electrons which repel each other as a result of their mutual columbic repulsion, and, in the ground state, tend to occupy the diagonal sites of the cell.

![QCA Cells with Electrons and Quantum Dot](image)

Figure 1. QCA Cells with Electrons and Quantum Dot
Binary information can be encoded in the position of the electrons in the cell. With the placement of the two extra electrons in the four dots and due to the electrostatic repulsion, the two free electrons only can be at two stable positions. These two conditions considered as -1 and +1 polarity or Boolean values 0 and 1 respectively. One of the main discussions of QCA is the intercellular movement of electrons. As it was maintained, the two free electrons of each cell can only be in two stable conditions. The movement of each cell free electrons between its dots is done through the tunneling mechanism.

3.2. CLOCKING IN QCA

The movement of electron is done with the help of clocking i.e. to facilitate transfer to a new ground state, another approach based on clocking has been suggested [22]. Clocking (by application of an appropriate voltage to a cell) leads to adjustment of tunneling barriers between quantum dots for transfer of electrons between the dots. Clocking is performed in one of two ways: zone clocking and continuous clocking.

3.2.1. Zone Clocking

In zone clocking, each QCA cell is clocked using a four-phase clocking scheme as shown in Figure 2. The four phases correspond to switch, hold, release and relax [15]. In the switch phase, cells begin unpolarized and with low potential barriers but the barriers are raised during this phase. In the hold phase, the barriers are held high while in the release phase, the barriers are lowered. In the last phase, namely relax, the barriers remain lowered and keep the cells in an unpolarized state. This is shown with an example in which the movement of electron and the corresponding clock zones are given as shown in the Figure 3.

3.2.2. Continuous Clocking

An alternative to zone clocking, called continuous clocking, involves generation of a potential field by a system of submerged electrodes. In QCA system, clocking is employed to achieve adiabatic switching to reduce the power dissipation. Detailed research on this topic provides not only better understanding of the power dissipation in QCA circuits, but also suggests that there is no fundamental lower limit on the energy dissipation cost of information transportation.

![Figure 2. QCA clock zones.](image-url)
3.3. COMPONENTS OF QCA

There are three major components in QCA [8]. With the help of these components the designs of ALU’s can be performed. They help in transfer of information from one QCA cell to another cell with the help of polarization effect. A single device is used for the construction of all components of an entire circuit with computational elements and wires. The QCA cell is a basic building block of nanotechnology that can be used to make gates, wires and memories. The basic logic circuits used in this technology are QCA wire, QCA inverter and the Majority Gate (MG), using these all other logical circuits can be designed.

3.3.1. QCA wire

The concept of a QCA wire is that when the cells are placed in a serial manner then transmission of input appears at the output also. When the output is same as the input then it implies that the wire can be used just for interconnections. In a QCA wire, the binary signal propagates from input to output because of the electrostatic interactions between cells. The propagation in a 90° QCA wire is shown in Figure 4. Other than the 90° QCA wire, a 45° QCA wire can also be used. In this case, the propagation of the binary signal alternates between the two polarizations.

3.3.2. Inverter

The next important component of QCA is the inverter. The concept of inverter is that when the cells are placed in a serial manner then it acts as a wire but if it is placed in a parallel manner then it acts as an inverter. A QCA layout of an inverter circuit is shown in Fig. 4. Cells oriented at 45° to each other take on opposing polarization. This orientation is employed here to create the inverter shown in this Figure 5.
3.3.3. Majority gate

Another important component of QCA is the majority gate. The representation is given in the Figure 6. The majority gate performs a three-input logic function. Assuming the inputs is A, B and C, the logic function of the majority gate is given as in (1)

\[M(A, B, C) = A \cdot B + B \cdot C + A \cdot C \] (1)

The concept of majority gate is that the output is the majority of the three inputs given [16]. For example, in the below figure the three inputs given are ‘0’, ‘0’, ‘1’ and the output of the majority gate is the majority value of these three value i.e., 0.

IV. HYBRID ADDER IN QCA

Hybrid adder circuitry is provided for integrated circuits such as programmable integrated circuits. The hybrid adder may combine the capabilities of multiple adder architectures. Hybrid adders may include carry select and carry ripple adder circuits. The adder circuits may be combined using a carry look-ahead architecture. Adder functionality may be implemented using the resources of logic regions on the programmable integrated circuits. Each logic region may include combinatorial logic such as look-up table logic and register circuitry. The hybrid adder circuitry may receive input words to be added from the combinatorial circuitry and may produce corresponding arithmetic sum output signals to the register circuitry.

Hybrid adder circuitry in accordance with embodiments of the present invention may be part of any suitable integrated circuit. For example, the hybrid adder circuitry of the present invention may be implemented on programmable logic device integrated circuits.

4.1. NEED FOR HYBRID ADDER

While the other adders support parallelism, the requirement of majority gates which contributes to the overall area is quite high. The large number of majority gates has an indirect effect on the wire (delay and amount). It is therefore of interest to explore ways of reducing the area. It is known that ripple carry adders are simple and have low area requirement and carry select adder are fastest adder among other adders. So this fact is taken advantage of in this proposed design of hybrid adder.

4.2. IMPLEMENTATION OF QCA IN FULL ADDER

Generally, in any adder the major building block is the full adder [3] & [4]. With the help of this full adder it is possible to design the proposed hybrid adder which is made up of Carry Select adder, Carry Look Ahead adder and Ripple Carry adder. Three majority gates is implemented to provide the sum and carry outputs. This is shown in Figure 7.

The sum and carry expressions are given below:

\[\text{Sum} = M (\text{Cout}', \text{Cin}, M(A, B, \text{Cin}')) \] (2)
4.3. HYBRID OF CSLA, CLA & RCA

Generally, a Carry-Select adder (CSLA) is a particular way to implement an adder, which is a logic element that computes the \((n + 1)\) bit sum of two \(n\)-bit numbers. The carry-select adder is simple but rather fast, having a gate level depth of \(O(\sqrt{n})\) [5]. The carry-select adder generally consists of two ripple carry adders and a multiplexer. Adding two \(n\)-bit numbers with a carry-select adder is done with two adders (therefore two ripple carry adders) in order to perform the calculation twice, one time with the assumption of the carry being zero and the other assuming one. After the two results are calculated, the correct sum, as well as the correct carry, [8] is then selected with the multiplexer once the correct carry is known.

The number of bits in each carry select block can be uniform, or variable. In the uniform case, the optimal delay occurs for a block size \(O(\sqrt{n})\). When variable, the block size should have a delay, from addition inputs \(A\) and \(B\) to the carry out, equal to that of the multiplexer chain leading into it, so that the carry out is calculated just in time. The \(O(\sqrt{n})\) delay is derived from uniform sizing, where the ideal number of full-adder elements per block is equal to the square root of the number of bits being added, since that will yield an equal number of MUX delays.

A ripple carry adder allows adding two \(k\)-bit numbers. Half adders and full adders are used in RCA to process the propagation of sum and carry. The layout of a ripple carry adder is simple, which allows for fast design time; however, the ripple carry adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the previous full adder. Concatenating the \(N\) full adders forms \(N\) bit Ripple carry adder. In this carry out of previous full adder becomes the input carry for the next full adder. As carry ripples from one full adder to the other, it traverses longest critical path and exhibits worst case delay. But this disadvantage is overcome by combining the RCA with CSLA & CLA. The hybrid combination of proposed adder is shown in Figure 7.

A carry look ahead adder improves speed by reducing the amount of time required to determine carry bits. It can be contrasted with the simpler, but usually slower, ripple carry adder for which the carry bit is calculated alongside the sum bit, and each bit must wait until the previous carry has been calculated to begin calculating its own result and carry bits.
The carry-look ahead adder calculates one or more carry bits before the sum, which reduces the wait time to calculate the result of the larger value bits. Carry look ahead depends on two things:
1. Calculating, for each digit position, whether that position is going to propagate a carry if one comes in from the right.
2. Combining these calculated values to be able to deduce quickly whether, for each group of digits, that group is going to propagate a carry that comes in from the right.

Thus, with the help of QCA full adder the hybrid of CSLA, CSA and RCA is designed for 16 and 32 bits. The output of 16 bit hybrid adder is given as input to the Wallace tree multiplier and this potentially reduces the area and delay of the multiplier.

V. SIMULATION RESULTS & ANALYSIS:

The hybrid adder is designed for 16 and 32 bits and this is simulated using Xilinx tool [13] & [14]. The figure below shows the simulation result of the proposed 16 bit hybrid adder. The simulation result of 16 bit hybrid adder is given in the Figure 9. The inputs that are given to the adder are a, b and cin. Here both a and b are of 16 bit values each. The signal that is used is ‘carry’ it is forced with constant values either 1 or 0 and are used for carry generation. With the help of these signals the output sum and cout are produced for the design of 16 bit hybrid adder.
The simulation result of a 32 bit hybrid adder is given in the Figure. 10. The inputs that are given to the adder are \(a \), \(b \) and \(\text{cin} \). Here both \(a \) and \(b \) are of 32 bit values each. The signals that are used are \(\text{cout1} \) and \(\text{cout2} \) these are forced with constant values either 1 or 0 and are used for carry generation. With the help of these signals the output \(\text{ca_out} \) is produced for the design of 32 bit hybrid adder.

The results produced by the proposed hybrid adder are compared with the previous adder which is a combination of LFA- Ladner Ficsher adder and RCA- Ripple Carry adder [11]. The comparison result
shows that the area and delay is reduced when LFA is replaced by CSLA and CLA in the previous
hybrid adder. Tables 1 & 2 shows the area and delay of previous and proposed adders respectively.

<table>
<thead>
<tr>
<th>NO. OF BITS CONSIDERED</th>
<th>NO. OF LUT's USED</th>
<th>NO. OF BONDED IOB's</th>
<th>DELAY PRODUCED (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>51</td>
<td>48</td>
<td>15.093</td>
</tr>
<tr>
<td>32</td>
<td>76</td>
<td>97</td>
<td>42.485</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. OF BITS CONSIDERED</th>
<th>NO. OF LUT's USED</th>
<th>NO. OF BONDED IOB's</th>
<th>DELAY PRODUCED (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>26</td>
<td>14.846</td>
</tr>
<tr>
<td>32</td>
<td>63</td>
<td>89</td>
<td>35.83</td>
</tr>
</tbody>
</table>

VI. APPLICATION OF HYBRID ADDER

Hybrid adders are not only used in area delay reduction but also may be used in application in which
multipliers may find the use of this hybrid adder in the fast production of partial products during
multiplication process. As a result, the speed can be enhanced; the area–delay product is also
decreased.

6.1. WALLACE TREE MULTIPLICATION

A Wallace tree is an efficient hardware implementation of a digital circuit that multiplies two integers,
designed by an Australian Computer Scientist Chris Wallace in 1964. Wallace tree is known for their
optimal computation time, when adding multiple operands to two outputs using carry-save adders.
The Wallace tree guarantees the lowest overall delay but requires the largest number of wiring tracks
i.e. vertical feed through between adjacent bit-slices.

The Wallace tree has three steps:

1. Multiply (that is - AND) each bit of one of the arguments, by each bit of the other, yielding
 \(n^2 \) results. Depending on position of the multiplied bits, the wires carry different weights.
2. Reduce the number of partial products to two by layers of full and half adders.
3. Group the wires in two numbers, and add them with a conventional adder.

The number of wiring tracks is a measure of wiring complexity. Fig 8 shows an Wallace tree, where
CSLA indicates a carry-select adder having three multi-bit inputs and two multi-bit outputs.
The need for choosing Wallace tree multiplier in this proposed work is that it is the advance type of
multiplier that is used among the multipliers used in VLSI adders [23]. It is fast and robust in its
characteristics so to increase this added advantage the outputs of the 16 bit hybrid adder is given to
the Wallace tree multiplier hence reducing the area of the multiplier [24].
6.2. APPLICATION OF HYBRID ADDER IN WALLACE TREE MULTIPLIER

The hybrid adder which is designed using QCA model is used in a Wallace tree multiplier. As a result of implementing the use of hybrid adder in this multiplier the area and delay can be reduced. The application can be implemented by considering the outputs of a 16 bit hybrid adder which is given as input to the Wallace tree multiplier. This involves the usage of full adders and 16 bit hybrid adder. Here, the usage of half adders is totally avoided and thus decreasing the area involved in the design of the Wallace tree multiplier.
The simulation result of Wallace tree multiplier is given in the Figure 12. The inputs that are given to the multiplier are x and y. The signals that are used are pp, s, cc and cout. And ‘d’ is the constant that is forced with constant values either 1 or 0 and are used for carry generation. With the help of these signals the output z is produced for the design of low area design of the Wallace tree multiplier.

The ordinary Wallace tree multiplier with RCA and the Wallace tree multiplier with hybrid adder is compared and the comparison results shows that the multiplier’s area and delay is reduced when hybrid adder is implemented in it as shown in table 3.

Table 3. Area and Delay comparison of Wallace tree multiplier with RCA & Hybrid adder

<table>
<thead>
<tr>
<th>Type of adder used in Wallace tree multiplier</th>
<th>Area</th>
<th>Delay(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wallace RCA</td>
<td>189</td>
<td>27.026</td>
</tr>
<tr>
<td>Wallace Hybrid</td>
<td>155</td>
<td>24.386</td>
</tr>
</tbody>
</table>
The ordinary Wallace tree multiplier with RCA and the Wallace tree multiplier with hybrid adder is compared and the comparison results show that the multiplier’s area and delay is reduced when hybrid adder is implemented in it as shown in table 3 and the graphical representation of the same is shown in Figure 13. From the graphs, we can infer that the growth rate of area and delay for a hybrid adder is slower than that of previous adder reported in the literature. Also, the growth rate of area delay product is small for a hybrid adder.

VII. CONCLUSION

In this paper, with the help of QCA technology, the hybrid adder which is the combination of RCA, CLA and CSLA is designed and it is applied to the Wallace tree multiplier. The hybrid adder is shown to be particularly well suited to the QCA model. Besides the advantages in terms of low delay for the Hybrid adder, the approach for the development of hybrid adder is expected to have other applications. In particular, the small delay for hybrid adder is advantageous in the design of multiplier units in the QCA paradigm. The proposed hybrid adder thus potentially reduces the area and delay of the adder and the comparison result shows that the proposed hybrid adder is well suited for low complex adders and fast computation.

ACKNOWLEDGEMENT

The authors thank the Management and the Principal of Sri Ramakrishna Engineering College, Coimbatore for providing excellent computing facilities and encouragement.

REFERENCES

A.Y Wu “8.2.7.3 Wallace Tree Multiplication” National Taiwan University, access. ee.ntu.edu.tw/

AUTHORS

Vijayalakshmi. P received the Bachelor of Engineering degree in Electronics and Communication Engineering from SNS College of Technology, Coimbatore, India, in 2010. She is currently pursuing Master of Engineering degree from the Department of VLSI Design, at Sri Ramakrishna Engineering College, Coimbatore. Her area of interest includes Low power VLSI, Digital Electronics, Communication systems.

Kirthika. N received the Bachelor of Engineering degree in Electronics and Communication Engineering from Avinashilingam University, Coimbatore, India, in 2009 and received Master of Engineering degree from the Department of VLSI Design, Anna University of Technology, Coimbatore, India. She is currently working as Assistant Professor at Sri Ramakrishna Engineering College, Coimbatore. Her area of interest includes solid state devices, VLSI fabrication & VLSI architecture.